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Combined Streamline Upwind Petrov Galerkin Method
and Segregated Finite Element Algorithm
for Conjugate Heat Transfer Problems

Atipong Malatip, Niphon Wansophark, Pramote Dechaumphai*
Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University,
Patumwan, Bangkok, 10330, Thailand

A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite
element algorithm for solving conjugate heat transfer problems where heat conduction in a solid

is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind

Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region,

while the analysis of heat conduction in solid region is performed by the Galerkin method. The

method uses the three-node triangular element with equal-order interpolation functions for all

the variables of the velocity components, the pressure and the temperature. The main advantage

of the presented method is to consistently couple heat transfer along the fluid-solid interface.

Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the

counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a

conducting wall, and the conjugate natural convection and conduction from heated cylinder in

square cavity, are selected to evaluate efficiency of the presented method.
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1. Introduction

Conjugate heat transfer problems are encoun-
tered in many practical applications, where heat
conduction in a solid region is closely coupled
with heat convection in an adjacent fluid. There
are many engineering problems where conjugate
heat transfer should be considered such as design
of air-cooled packaging, heat transfer enhance-
ment by the finned surfaces, design of thermal
insulation, nuclear reactor design, design of solar
equipment, heat transfer in a cavity with thermally
conducting wall or internal baffle, etc. Most of
the studies in this research area, however, employ
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the finite difference and the finite volume methods
as the numerical tools. He et al. (1995) studied the
conjugate problem using an iterative FDM/BEM
method for parallel plate channel with constant
outside temperature. Sugavanam et al.(1995) study
a numerical investigation of conjugate heat trans-
fer from a flush heat source on a conductive board
in laminar channel flow. Chen and Han (2000)
show the solution of a conjugate heat transfer
problem using a finite difference SIMPLE-like
algorithm. Schifer and Teschauer (2001) used the
finite volume method for analysis of both the
fluid flow behavior and the solid heat transfer
with thermal effect. Kang-Youl Bae et al.(2004)
study on natural convection in a rectangular en-
closure by using the finite volume method. The
results from these problems show that both the
finite difference and the finite volume methods
can perform very well on the problems of interest,
but some assumptions on heat transfer coefficients
have to be made in order to compute the tem-
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peratures along the fluid-solid interface. Further-
more, determination of the unknown tempera-
tures and the heat fluxes at the fluid-solid inter-
face is normally performed in an iterative way,
usually through the use of the artificial heat
transfer coefficient.

At present, a very few publications for solving
the conjugate heat transfer problems by the finite
element method have been proposed in the litera-
ture. Misra and Sarkar (1997) used the standard
Galerkin formulation to solve the continuity, mo-
mentum and energy equations simultaneously.

In this paper, the streamline upwind Petrov-
Galerkin method (Brooks and Hughes, 1982 ; Du
Toit, 1998 ; Zienkiewicz and Taylor, 2000) is
selected for the analysis of conjugate heat trans-
fer problems. The method uses triangular elements
with equal-order interpolation functions for the
velocity components, the pressure and the tempera-
ture. A segregated solution algorithm (Rice and
Schnipke, 1986 ; Wansophark and Dechaumphai,
2004 ; Kim and Sengupta, 2005) is also incorpor-
ated to solve the unknown variables separately
for improving the computational efficiency. The
main advantages of the presented scheme are illu-
strated and explained by using Figs. 1 and 2.
Figure 1 shows typical control volumes of the
fluid and solid cells along the fluid-solid interface
used by the finite volume method. In the figure,
the control volumes 1 and 2 are in the fluid region
while the control volumes 3 and 4 are in the solid
region. Because the heat conduction coefficients
in solid and fluid regions are different, the har-
monic mean of the heat conduction coefficient
along the fluid-solid interface was introduced and
assumed in the form (Patankar, 1980),

. zkskf
kinterface_ ks+kf (1>

where ks and ks are the heat conduction coeffi-
cients in the solid and the fluid region, respec-
tively. The heat flux across the fluid-solid in-
terface was then calculated using the assumed
heat conduction coefficient. For the finite element
method presented in the paper, the elements along
the interface are shown in Fig. 2. The use of the
finite element method, for both the fluid and solid
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Fig. 1 Control volumes across fluid-solid interface
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Fig. 2 Elements across fluid-solid interface in finite

element method

regions with common nodes along the fluid- solid
interface, provides convenience in analysis com-
putation. At the same time, the use of the single
finite element method in both the regions allows
the fluid-solid interface temperatures to be com-
puted directly without assuming the heat transfer
coefficient. In addition, the continuity of the heat
fluxes across the fluid and solid regions along the
interface is also preserved automatically.

The paper starts from briefly describing the set
of the partial differential equations that satisfy
the law of conservation of mass, momentums and
energy. Corresponding finite element equations
are derived and the element matrices are presented.
The computational procedure used in the devel-
opment of the computer program is then described.
Finally, the finite element formulation and the
computer program are then verified by solving se-
veral examples that have exact solution and nu-
merical solutions from other methods.

2. Theoretical Formulation
and Solution Procedure

2.1 Governing equations

The governing equations for conjugate heat
transfer problems consist of the conservation of
mass which is called the continuity equation, the
conservation of momentum in x and y-directions,
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and the conservation of energy, as follows,
Continuity equation,

ou |, v )
W+@ (2a)

Momentum equations,

o

olugeross =3l E 5] oo
—0g(1=B(T-T.))

Energy equation,
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where # and v are the velocity components in
the x and y-direction, respectively, o is the den-
sity, p is the pressure, p is the viscosity, g is
the gravitational acceleration constant, /3 is the
volumetric coefficient of thermal expansion, 7 is
the temperature, 7T, is the reference temperature
for which buoyant force in the y-direction van-
ishes, ¢ is the specific heat, & is the coefficient
of thermal conductivity and @ is the internal
heat generation rate per unit volume. Equation
(2d) can also be used for solving conduction heat
transfer in solid by setting both the velocity com-
ponents, z and v, as zero.

2.2 Finite element formulation

The three-node triangular element is used in
this study. The element assumes linear interpola-
tion functions for the velocity components, the
pressure, and the temperature as,

u(x,y) =2Ni(w,y) wi=| NJ{u}  (3a)

v(0,9) =ZN;(x, ) vi=| N{v}  (3b)
p(x,y) =2ZN:(x.y) pi=| NI{p}  (3¢)
T (x,y)=2ZN;(x,y) = NI{T}  (3d)

where 7=1,2,3; and N, is the element interpola-
tion functions.

The basic idea of the solution algorithm pre-
sented in this paper is to use the two momentum
equations for solving both of the velocity com-
ponents, use the continuity equation for solving
the pressure, and use the energy equation for solving
the temperature in solid and fluid regions. The
finite element equations corresponding to the mo-
mentum, the continuity and the energy equations,
are shown in next section.

2.2.1 Streamline upwind petrov-galerkin
method

The basic idea of the streamline upwind meth-
od is to add diffusion, which acts only in the flow
direction. Extended to a Petrov-Galerkin formu-
lation, the standard Galerkin weighting functions
are modified by adding a streamline upwind pe-
rturbation, p, for suppressing the non-physical
spatial oscillation in the numerical solution, which
again acts only in the flow direction. In this pa-
per, the modified weighting function, W;, can be
expressed as, (Zienkiewicz and Taylor, 2000)

Wi=Ni+ p— N+ ah [ 8N,+ 8]\6} (@)

2| U| oy

where @ is calculated for each element from,

a=dopt=coth P —ﬁ (5a)
with
Pe=|U|h and | U|=Vu?*+v* (5b)

where Pe is the Peclet numbers, | UU| is mean
resultant velocity and % is element size as shown
in Fig. 3.

Fig. 3 The two-dimensional, element size /% and
streamline directions
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2.2.2 Discretization of momentum equations

To derive the momentum equations that corre-
sponded to the Streamline Upwind Petrov-Galerkin
scheme, the Galerkin method of weighted resi-
duals is employed by multiplying Egs. (2b) and
(2¢c) with the weighting function, N, except for
the convection terms. The modified weighting
function is applied to the convection terms in the
equations, resulting in an inconsistent weighted
residual formulation.

[0 a0
—/Nl d.Q+/N<
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a’Q+/N <a 2+‘>d9 (6b)
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where 2 is integrated over the element domain.

Then the diffusion terms are integrated by
parts using the Gauss theorem (Zienkiewicz and
Taylor, 2000) to yield the element equations in
the form,

[AJ{u}={Rpx}+{Ru} (7a)
[Al{v}={Rpy} +{Rs} +{Rs} (7b)
where [A]=[Acono] +[Aais].
The coefficient matrix [ A] contains the known
contributions from the convection and diffusion

terms. The element matrices and load vectors in
Egs. (7a) and (7b) are defined by,

[Acons] = p/{W}< [ J [%ﬂ)dg (8a)

Larl=uf ({51 G+ S 5 ]) @@ &)
(Ro}=— [(N}2L o (8¢)

(Rw}=— [{N}2Lae (84)

(Ruy=p [ (N} 2 e+ SL

o }dl” (8¢)

(Roy=p [ AN} 5L nat- o,

= }dr (8f)

(Ro)=— [{N)[og1—B(T—T.)1dQ (82

where ['is the element boundary. The element
equations are assembled to yield the global equa-
tions for the velocity components. Such global
equations are then modified for the specified ve-
locity components along the boundaries prior to
solving for the new velocity components.

2.2.3 Discretization of pressure equation

To derive the discretized pressure equation, the
method of weighted residuals is applied to the
continuity equation, Eq. (2a),

[N ( Gy do==[( %

-I-/Ni(unx-l-vny) dl'=0
r

)d.Q o

where the integrations are performed over the
element domain £ and along the element bound-
ary I'; nx and n, are the direction cosines of
the unit vector normal to element boundary with
respect to x and y-direction, respectively. As men-
tioned earlier, the continuity equation is used for
solving the pressure, but the pressure term does
not appear in the continuity equation. For this
reason, the relation between velocity components
and pressure are thus required. Such relations can
be derived from the momentum equations, Egs.
(6a) and (6b) as

Asu=—ZAsurt fi— [NeSLa@ (100

Aiivi:_zAijUj'i_fiv_/Ni@dQ (10b)
JEi g oy

where f¥ and f7 are the surface integral terms
and the source term due to buoyancy. By assum-
ing constant pressure gradient on an element,
then,

ui:ﬁi_KPiQ

E (11a)

sz ap

dy (11b)
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where
- ;Aijuj + 1
ul:A—“ (12&)
. — glAijUj +fiv
Z)i:A—ii (IZb)
[N
Kpi:A—ii (12¢)

By applying the element velocity interpolation
functions, Egs. (3a) and (3b), into the continuity
equation, Eq. (9),

oN, [N,
" Jo ox (Nju;) d2 ./s; oy

~|—/Ni(unx+ vny) dI=0
r

(13)

nd introducing the nodal velocities z; and v; from

Egs. (10a) and (10b), then Eq. (13) becomes,
ON; op
ax (NKPJ) ) ay d.Q

N (e

=[5 <Mu,>dg+/g 8y( 0)de  (14)
—[ﬂN;-(un,ﬁvm) dy

Finally, applying the element pressure interpola-
tion functions, Eq. (3c), the above element equa-
tions can be written in matrix form with unknowns

of the nodal pressures as,
[Kx'i_m]{p}:{Fu}""{Fv}""{Fb} (15)

where

= [ {2 i) | D |ae (16a)
(K] = [ |} (k) | - |a@ (16b)
(R)= [N (P ae (e
(F)= [, (o) {5} ae (164)
(F)=— [{NNuncton)dl' (160

The above element pressure equations are assem-
bled to form the global equations, boundary con-
ditions for the specified nodal pressures are im-
posed prior to solving for the updated nodal pres-
sures.

224 Discretization of energy equation

The finite element equations corresponding to
the energy equation are derived using an approach
which is similar to the momentum equations. The
modified weighting function is applied to the con-
vection term in the energy equation, Eq.(2d).
The standard Galerkin method is then applied
to yield the element equations and the integrated
over the element domain £,

/Wpc( a—T+U aT)dQ

=f9Nik(a;:f+§T)dg+/gNindQ

(17)

and then the diffusion terms are integration by
parts using the Gauss theorem to yield the element
equations in the form,

[ATHT}={R}+{Q)} (18)

where [AT]=[ALn ]+ [Abiys].

The matrix [A7”] consists of the contributions
from the convection and diffusion terms. The ele-
ment matrices and load vectors { R} and { @} re-
present the heat flux along the element boundary
and internal heat generation, respectively as,

(Al =oc [{WH{u| G| +o| ST | ) a2 (190

Az =4[, ({ 5l e [+ 15 3y ] 2w 00w

{R}= kf{N}<—nx+%T )dF (19¢)
[Q}=0 [N} Q42 (19d)

These element equations are again assembled to
yield the global temperature equations. Appro-
priate boundary conditions are applied prior to
solving for the new temperature values.
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2.2.5 Computational procedure

The computational procedure is described in
this section. A set of initial nodal velocity com-
ponents, pressures, and temperatures are first as-
sumed. The new nodal temperatures are comput-
ed using Eq. (18). The new nodal velocity com-
ponents and pressures are then computed using
Egs. (7a) and (7b) and Eq. (15), respectively. The
nodal velocity components are then updated us-
ing Eqgs. (10a) and (10b) with the computed nodal
pressures. This process is continued until the speci-
fied convergence criterion is met. Such segregat-
ed solution procedure helps reducing the com-
puter storage because the equations for the veloc-
ity components, the pressure, and the temperature
are solved separately.

3. Results

In this section, four example problems are pre-
sented. The first example, conjugate Couette flow
problem in parallel plate channel, is chosen to eval-
uate the finite element formulation and to vali-
date the developed computer program. The sec-
ond, the third and the fourth examples, counter-
flow in heat exchanger, conjugate natural con-
vection in a square cavity with a conducting wall
and conjugate natural convection and conduction
from heated cylinder in square cavity, respective-
ly, are used to illustrate the efficiency of the pre-
sented scheme for the analysis of conjugate heat
transfer problems.

3.1 Conjugate couette flow problem in par-
allel plate channel

The first example for evaluating the finite ele-
ment formulations and validating the developed
computer programs is the problem of conjugate
Couette flow problem in parallel plate channel
(White, 1991). The problem statement is shown
in Fig. 4 with a fluid between the upper wall
that moves at a constant velocity and a stationary
conducting solid. The other side of the conduct-
ing solid is maintained at a constant tempera-
ture that is higher than the constant temperature
of the opposing channel wall. The computed solu-
tions are compared with the analytical solutions
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Fig. 4 Conjugate couette flow problem in parallel
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Fig. 5 Comparison of conjugate benchmark solu-
tion for couette flow conditions

(White, 1991) as shown in Fig. 5. The figure show
that the solutions obtained from the presented
finite element scheme shows excellent agreement
with the analytical solutions for varying conduc-
tivity ratios, K =Fks/ks. The numerical results of
the temperatures from the Streamline Upwind
Petrov-Galerkin method are compared within 0.04%
while the velocities compared within 0.01% of
the analytical solutions.

3.2 Conjugate counter flow heat exchanger

To further validate the numerical scheme, a
conjugate counter flow heat exchanger problem
is selected as the second test case. This heat ex-
changer consists of two parallel flow passages
with widths @: and as, separated by a solid plate
with thickness of @, as shown in Fig. 6. The outer
walls of the flow passages are assumed to be
adiabatic. The same properties and uniform inlet
velocity and temperature profiles are assumed for
the hot and cold fluids. The parameters adopted
in the computation are as follows, geometrical
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sizes ai=a>=a3=0.1 and L=1.0, the flow para-
800, Re=
133.33 and Pr=0.75, the flow parameters in lower
channel #,=0.1, 73=300, Re=66.67 and Pr=
0.75, conduction ratio K=5. The finite element

meters in upper channel ,=0.2, T1=

;ﬁ E Hot fluid I
W s 0 LA
X Cold fluid a3 I E ;:;
| L ~

Fig. 6 A conjugate counter flow heat exchanger

Fig. 7 Finite element model for conjugate counter
flow heat exchanger

Fig. 8 Predicted temperature contours for a conju-
gate counter flow heat exchanger
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Fig. 9 The temperature profiles at x=L/2 for a
conjugate counter flow heat exchanger
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model, consisting of 1,763 nodes and 3,360 tri-
angles as shown in Fig. 7, is used in this study.
Fig. 8 shows the predicted temperature contours
in entire domain. The predicted temperature dis-
tributions at x=L/2 from presented scheme is
compared with the finite volume results from
Chen and Han (2000) as shown in Fig. 9. The
figure also shows good agreement of the solu-
tions.

3.3 Conjugate natural convection in a
square cavity with a conducting wall

To further evaluate the efficiency of the pre-
sented schemes, the problem of conjugate natural
convection in a square cavity with a conducting
wall as shown in Fig. 10, is selected. The fluid in
the cavity is heated from the higher temperature
solid wall along the left side and maintained at
zero temperature along the right side, all other
boundaries are insulated. The finite element model
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Fig. 11 Finite element model for the conjugate nat-

ural convection problem
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for both the solid wall and fluid region consisting
of 2,009 nodes and 3,840 triangles is shown in
Fig. 11. Figs. 12 and 13 show the predicted stream-
line and temperature contours for the different
thermal conductivity ratios of =1 and 10 at
the Grashof numbers of 10° and 10°, respectively.

Atipong Malatip, Niphon Wansophark and Pramote Dechaumphai

The temperature and the heat flux distributions
along the solid—fluid interface with the variation
of conduction ratio, K, are shown in Figs. 14(a)
and (b), respectively. In addition, Table 1 com-
pares the predicted average Nusselt numbers along
the interface, N_ux:o.z, with the results using the
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(a)
Fig. 12
for K=10, all at Gr=10°

(c)

(a) Streamline contours for K=10, (b) Temperature contours for K=1 and (c) Temperature contours
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(a) Streamline contours for K=10, (b) Temperature contours for K=1 and (c) Temperature contours
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(a) Interface temperatures and (b) Interface heat fluxes, all at Gr=10°
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Table 1 Variation of the overall nusselt numbers

Average nusselt number along interface

Gr (% difference from Ref.(Zienkiewicz and Taylor, 2000))
Conductivity ratio, K=/s/ks 1 5 10
Hrib k
10° riberse 0.87 1.02 1.04

(Zienkiewicz and Taylor, 2000)
10% SUPG

0.87 (0.0%)

1.02 (0.0%) 1.04 (0.0%)

Hribersek

10° 2.08

(Zienkiewicz and Taylor, 2000)
10° SUPG

2.07 (0.48%)

3.42 3.72

3.39 (0.87%) 3.67 (1.34%)

boundary-domain integral method by Hribersek
(2000). The table shows good agreement of the
average Nusselt numbers for both the temperature
and the heat flux.

3.4 Conjugate natural convection and con-
duction from heated cylinder in square
cavity

The last example of a high temperature cylin-

der enclosed by a square cavity as shown in Fig.
15, is selected to demonstrate the use of the pre-
sented method for the problem with a more com-
plex geometry. Both the vertical side walls of the
square cavity are isothermal. The upper horizon-
tal boundary is surrounded by a solid material.
The upper boundary of this solid region is consi-
dered as adiabatic. The lower horizontal bound-
ary of the fluid cavity is also an adiabatic bound-
ary. Due to the symmetry of flow solution, only
the right half of the enclosure was analyzed. The
finite element model consisting of 1,821 nodes
and 3,450 triangles, as shown in Fig. 16, is used in
this study. Figure 17 shows the predicted stream-
line and temperature contours vary with the ther-
mal conductivity ratios and the Rayleigh num-
bers. Figure 18 shows the predicted temperature
distributions of lower adiabatic boundary at y=
0, interface of fluid-solid regions at y=1, and
the upper adiabatic boundary at y=1.2. This pic-
ture represents the different thermal conductivity
ratios of K=0.1, 1, 5 and 10, respectively, at the
Rayleigh number of 10* and is compared with
the results from Dong and Li (2004). The figure
shows good agreement of the solutions obtained
from the presented scheme.

57

fluid

)}'

Fig. 15 Conjugate natural convection from heated
cylinder in square cavity problme

P P P P N Pt P Y |

A PN P AR P

Fig. 16 Finite element model for heated cylinder in
square cavity problem

In addition, the average Nusselt number, Nu,
was also investigated in this research, the average
Nusselt number can be calculated by,
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which

Nuz‘
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1
Nttmean= zﬂr-/Nu ds
oT Xlx—xcl+‘£ =l
0x 7 oy r

(20)

1)

where x¢, y. are the center coordinates of the high
temperature cylinder and 7 is radius of cylinder.

Table 2 gives a comparison of Nu at the cy-
linder’s surface with results of Dong and Li. From
the table, it can be concluded that the overall
mean Nusselt number increases with the increase

K=1 K=10
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o2
2/ &2
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Ra=10°
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Ra=10°

Fig. 17 Streamline and temperature contours for K=0.1, 1 and 10, at Ra=10% 10* and 10°

Table 2 Variation of the overall mean Nusselt numbers along cylinder
(% difference from Ref. (Patankar, 1980))

Conductivity ratio, K=rks/ ks

Ra
0.1 1 5 10

10® SUPG 3.78 3.95 4.19 428
Dong and Li, 2004

10* ’ 4.05 4.20 — 4.49
(Patankar, 1980)

10* SUPG 3.99 (1.48%) 4.13 (1.67%) 4.35 4.43 (1.34%)

10° SUPG 6.84 6.97 7.23 7.35

108 SUPG 12.10 12.26 12.70 13.00




Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for ---

08r1
— D : L
0.7 \.‘\ *  hottom one & L
- * nterface | SUPG
0.6 \ . Lgprace)
0.5 {,-—-\\
T 04¢p
03 F / \\
. / \
0.2 %
0.1
1 L 1 1
0.0 02 0.4 0.6 0.8 1.0
X
(a) K=0.1
0671
g2 —_— Dung & Li

*  bottom
* interface } SUPG

04+ \ ® top
roos \ \

T

<
(8]
T

0.0 0.2 0.4 0.6 0.8 1.0

051
Dong & Li

//\ *  battom

04r \ +  interface } SUPG
= 1op
03 '\\'
T sl /)’"’PM_Q'\N \
/,4.. Y
arr /
n.0 0.2 0.4 0.6 0.8 1.0
(c) K=5.0
05 r -
-//' — Dong & Li
N *  boit
047r i o imerface } SUPG
/ = wp
03
T /
02F /
s, N
nip oy
/ w

(d) K=10.0
Fig. 18 Compared the temperature distributions for
conjugate natural convection and conduc-

tion from heated cylinder in square caviuty
for K=0.1,1, 5 and 10, all at Ra=10*
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of thermal conductivity ratios and the Rayleigh
numbers. The table shows good agreement of the
solutions obtained from the two methods.

4. Conclusions

A coupled finite element method for conjugate
heat transfer problems was presented. The method
combines the viscous thermal flow analysis of the
fluid region and the heat transfer analysis in the
solid region together. The finite element formu-
lation and its computational procedure were first
described. The flow analysis used a segregated
solution algorithm to compute the velocities, the
pressure and the temperature separately for im-
proving the computational efficiency. The con-
vection terms in the momentum and the energy
equations are treated by the Streamline Upwind
Petrov-Galerkin method to suppress the non-
physical spatial oscillation in the numerical solu-
tions. All the finite element equations were de-
rived and a corresponding computer program was
developed. The efficiency of the coupled finite ele-
ment method has been evaluated by several exam-
ples that were previously performed using other
methods. These examples highlight the benefit of
the combined finite element method that can sim-
ultaneously model and solve both the fluid and
solid regions, as well as to compute the tempera-
tures along the fluid-solid interface directly.
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